A decrease in the 13 C/ 12 C ratio of atmospheric CO 2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13 C-Suess effect, is driven primarily by the input of fossil fuel-derived CO 2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO 2 from fossil fuel, land, and oceans can explain the observed 13 C-Suess effect unless an increase has occurred in the 13 C/ 12 C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO 2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C 3 plants at times of altered atmospheric CO 2 , but increasing discrimination has not previously been included in studies of long-term atmospheric 13 C/ 12 C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm −1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO 2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO 2 concentration. Significance Climate change and rising CO 2 are altering the behavior of land plants in ways that influence how much biomass they produce relative to how much water they need for growth. This study shows that it is possible to detect changes occurring in plants using long-term measurements of the isotopic composition of atmospheric CO 2 . These measurements imply that plants have globally increased their water use efficiency at the leaf level in proportion to the rise in atmospheric CO 2 over the past few decades. While the full implications remain to be explored, the results help to quantify the extent to which the biosphere has become less constrained by water stress globally.
IntroductionThe accumulation of excess CO 2 in the atmosphere over the past century has been associated with a closely related decrease in the