Copper in biological systems presents a formidable problem: it is essential for life, yet highly reactive and a potential source of cell damage. Tight control of copper is thus a cellular necessity. To meet this challenge, cells have evolved pumps for transmembranous transport, chaperones for intracellular routing, oxidases and reductases to change the oxidation state of copper, and regulators to control gene expression in response to copper. These systems are complemented by specific mechanisms for the insertion of copper into enzymes. Copper homeostasis has evolved early in evolution and some components have been conserved from bacteria to humans. This has allowed researchers to apply knowledge across phyla and even involving human copper homeostatic diseases to elucidate the fundamental mechanism of cellular copper homeostasis. After an introduction to the properties of copper and its role in biological systems, some of the best studied bacterial systems for copper homeostasis will be discussed.