Motivated by mass-spectrometry protein sequencing, we consider a simply-stated problem of reconstructing a string from the multiset of its substring compositions. We show that all strings of length 7, one less than a prime, or one less than twice a prime, can be reconstructed uniquely up to reversal. For all other lengths we show that reconstruction is not always possible and provide sometimes-tight bounds on the largest number of strings with given substring compositions. The lower bounds are derived by combinatorial arguments and the upper bounds by algebraic considerations that precisely characterize the set of strings with the same substring compositions in terms of the factorization of bivariate polynomials. The problem can be viewed as a combinatorial simplification of the turnpike problem, and its solution may shed light on this long-standing problem as well. Using well known results on transience of multi-dimensional random walks, we also provide a reconstruction algorithm that reconstructs random strings over alphabets of size ≥ 4 in optimal near-quadratic time. * UCSD.