Interpretation of K-Ar determinations of the apparent age of crystallization of diagenetic potassic layer silicates should take into account the current ideas concerning the smectite to illite conversion of clay minerals. These minerals are the major K-bearing neogenic phases in sedimentary rocks and, therefore, it is important to keep in mind their origin and tile pathway of their evolution. Another important contributor to K and Ar content are detrital minerals which are not considered in detail in this paper. The radiogenic Ar retained by diagenetic illitic clay minerals (illite and illite-smectite interstratified minerals with a low smectite content) will be a function of: (1) the amount Ar lost through the destruction of mixed-layer and small grained iUitic material dissolved to produce new, larger, illite-rich crystals; and (2) the amount of Ar produced and retained in the growing, stable illite mineral grains. Hence the K/Ar ratios in diagenetic illites depend on several variables. In samples where the detrital contribution is small, when the illite growth reaction is rapid, i. e. occurring over a short period of time, the accumulated radiogenic Ar can be used to date the geologic event which caused this crystal growth. However, if the process occurs over a significant period of time, as is usually the case in shales, the age deduced by radiogenic Ar content will indicate the changes in mineralogy and grain-sizes of the different participating phases. These changes will be the result of time and temperature variables of the sedimentation and burial of the samples studied. The radiogenic Ar accumulated will reflect a sequence of mineral changes over a period of time.The K-Ar dating of potassic sedimentary minerals has been pursued for some time now, with reasonable results especially when the minerals were formed rapidly such as in glauconite genesis. In smectite/illite mineral mixtures, the results are often more than ambiguous. The greatest number of cases where different layers in a continuous depositional series (diagenesis) are dated show a significant decrease in apparent age as the sedimentary age increases