Charge-pumping electrically detected magnetic resonance (CP EDMR), or EDMR in the CP mode, is improved and applied to a silicon metal–oxide–semiconductor field-effect transistor (MOSFET). Real-time monitoring of the CP process reveals that high-frequency transient currents are an obstacle to signal amplification for EDMR. Therefore, we introduce cutoff circuitry, leading to a detection limit for the number of spins as low as 103 for Si MOS interface defects. With this improved method, we demonstrate that CP EDMR inherits one of the most important features of the CP method: the gate control of the energy window of the detectable interface defects for spectroscopy.