We present high level ab initio potential energy curves for the M(n+)-RG complexes, where n = 1, 2, RG = rare gas, and M = Be and Mg. Spectroscopic constants have been derived from these potentials, and they generally show very good agreement with the available experimental data. The potentials have also been employed in calculating transport coefficients for M(+) moving through a bath of RG atoms, and the isotopic scaling relationship is examined for Mg(+) in Ne. Trends in binding energies, D(e), and bond lengths, R(e), are discussed and compared to similar ab initio results involving the corresponding complexes of the heavier alkaline earth metal ions. We identify some very unusual behavior, particularly for Be(+)-Ne, and offer possible explanations.