Background & objectives:
Haemoptysis in children is potentially life-threatening. In most cases, the bleeding arises from the systemic circulation, and in 5-10 per cent of cases, it arises from the pulmonary circulation. The role of computed tomography angiography (CTA) in this setting is important. This study was undertaken (
i
) to study the role of single-phase split-bolus dual energy contrast-enhanced multidetector row CTA (DECTA) in the evaluation of haemoptysis in children; (
ii
) to analyze the patterns of abnormal vascular supply in the various aetiologies encountered.
Methods:
A retrospective study of 86 patients who underwent split bolus DECTA for the evaluation of haemoptysis was performed. Final diagnoses were categorized as normal computed tomography, active tuberculosis (TB), post-infectious sequelae, non-TB active infection, cystic fibrosis (CF), non-CF bronchiectasis, congenital heart disease (CHD), interstitial lung disease, vasculitis, pulmonary thromboembolism and idiopathic pulmonary haemosiderosis. Abnormal bronchial arteries (BAs) and non-bronchial systemic collateral arteries (NBSCs) were assessed for number and site and their correlation with underlying aetiologies.
Results:
A total of 86 patients (45 males, age from 0.3 to 18 yr, mean 13.88 yr) were included in the study; among these only two patients were less than five years of age. The most common cause of haemoptysis was active infection (n=30), followed by bronchiectasis (n=18), post-infectious sequelae (n=17) and CHD (n=7). One hundred and sixty five abnormal arteries were identified (108 BA and 57 NBSC), and were more marked in bronchiectasis group.
Interpretation & conclusions:
Active infections and bronchiectasis are the most common causes of haemoptysis in children. While post-infectious sequelae are less common, in patients with haemoptysis, the presence of any abnormal arteries correlates with a more frequent diagnosis of bronchiectasis. NBSCs are more common in post-infectious sequelae and CHD.