Metagenomics has enabled the comprehensive study of microbiomes. However, many applications would benefit from a method that can sequence specific bacterial taxa of interest (pathogens, beneficial microbes, or low-abundance taxa), but not the vast background of other taxa in a microbiome sample. To address this need, we developed mEnrich-seq, a method that can enrich taxa of interest from metagenomic DNA before sequencing. The core idea is to exploit the self vs. non-self genome differentiation provided by natural bacterial DNA methylation and rationally choose methylation-sensitive restriction enzymes (REs), individually or in combination, to deplete host DNA and most background microbial DNA while enriching bacterial taxa of interest. This core idea is integrated with library preparation procedures in a way that only non-digested DNA libraries are sequenced. We performed in-depth evaluations of mEnrich-seq and demonstrated its use in several applications to enrich (up to 117-fold) genomic DNA of pathogenic or beneficial bacteria from human urine and fecal samples, including several species that are hard to culture or of low abundance. We also assessed the broad applicability of mEnrich-seq and found that 3130 (68.03%) of the 4601 strains with mapped methylomes to date can be targeted by at least one commercially available RE, representing 54.78% of the species examined in this analysis. mEnrich-seq provides microbiome researchers with a versatile and cost-effective approach for selective sequencing of diverse taxa of interest directly from the microbiome.