Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders characterized by deficits in social communication and restricted, repetitive patterns of behavior or interests. ASD is highly heritable, but genetically and phenotypically heterogeneous, reducing the power to identify causative genes. We performed whole genome sequencing (WGS) in an ASD cohort of 68 individuals from 22 families enriched for recent shared ancestry. We identified an average of 3.07 million variants per genome, of which an average of 112,512 were rare. We mapped runs of homozygosity (ROHs) in affected individuals and found an average genomic homozygosity of 9.65%, consistent with expectations for multiple generations of consanguineous unions. We identified potentially pathogenic rare exonic or splice site variants in 12 known (including KMT2C, SCN1A, SPTBN1, SYNE1, ZNF292) and 12 candidate (including CHD5, GRB10, PPP1R13B) ASD genes. Furthermore, we annotated noncoding variants in ROHs with brain-specific regulatory elements and identified putative disease-causing variants within brain-specific promoters and enhancers for 5 known ASD and neurodevelopmental disease genes (ACTG1, AUTS2, CTNND2, CNTNAP4, SPTBN4). We also identified copy number variants in two known ASD and neurodevelopmental disease loci in two affected individuals. In total we identified potentially etiological variants in known ASD or neurodevelopmental disease genes for ~61% (14/23) of affected individuals. We combined WGS with homozygosity mapping and regulatory element annotations to identify candidate ASD variants. Our analyses add to the growing number of ASD genes and variants and emphasize the importance of leveraging recent shared ancestry to map disease variants in complex neurodevelopmental disorders.
Community-acquired urinary tract infection (UTI) is among the most common bacterial infections observed in humans. Postmenopausal women are a rapidly growing and underserved demographic group who are severely affected by rUTI with a >50% recurrence rate. In this population, rUTI can persist for years, reducing quality of life and imposing a significant healthcare burden. rUTI is most often treated by long-term antibiotic therapy, but development of antibiotic resistance and allergy leave physicians with fewer treatment options. The female urobiome has been identified as a key component of the urogenital environment. However, structural and functional changes in the urobiome underlying rUTI susceptibility in postmenopausal women are not well understood. Here, we used strictly curated, controlled cross-sectional human cohorts of postmenopausal women, urobiome whole genome (shotgun) metagenomic sequencing (WGMS), advanced urine culturing techniques, extensive biobanking of >900 patient-derived urinary bacterial and fungal isolates, and mass spectrometry-based estrogen profiling to survey the urobiome in rUTI patients during infection relapse and remission as well as healthy comparators with no lifetime history of UTI. Our results suggest that a history of rUTI strongly shapes the taxonomic and functional ecology of the urobiome. We also find a putative protective commensal population, consisting of species known to convey protection against bacterial vaginosis such as Lactobacillus crispatus, within the urobiome of women who do not experience UTI. Integration of clinical metadata detected an almost exclusive enrichment of putative protective species belonging to the genus, Lactobacillus, in women taking estrogen hormone therapy (EHT). We further show that the urobiome taxonomic ecology is shaped by EHT, with strong enrichments of putatively protective lactobacilli, such as L. crispatus and L. vaginalis. Integrating quantitative metabolite profiling of urinary estrogens with WGMS, we observed robust associations between urobiome taxa, such as Bifidobacterium breve and L. crispatus, and urinary estrogen conjugate concentrations, suggesting that EHT strongly alters the taxonomic composition of the female urobiome. We have further used functional metagenomic profiling and patient-derived isolate phenotyping to identify microbial metabolic pathways, antimicrobial resistance genes (ARGs), and clinically relevant antimicrobial resistance phenotypes enriched between disease-states. Our data suggest distinct metabolic and ARG signatures of the urobiome associated with current rUTI status and history. Taken together, our data suggests that rUTI history and estrogen use strongly shape the functional and taxonomic composition of the urobiome in postmenopausal women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.