Excessive ethanol gas is a huge safety hazard, and people will experience extreme discomfort after inhalation, so efficient ethanol sensors are of great importance. This article reports on ethanol gas sensors that use NiO hollow spheres assembled from nanoparticles, nanoneedles, and nanosheets prepared by the hydrothermal method. All of the samples were characterized for performance evaluation. The sensors based on the NiO hollow spheres showed a good response to ethanol, and the hollow spheres assembled from nanosheets (NiO-S) obtained the best ethanol gas-sensing performance. NiO-S provided a larger response value (38.4) at 350 °C to 200 ppm ethanol, and it had good stability and reproducibility. The nanosheet structure and the fluffy surface of NiO-S obtained the largest specific surface area (55.20 m2/g), and this structure was beneficial for the sensor to adsorb more gas molecules in an ethanol atmosphere. In addition, the excellent sensing performance could ascribe to the larger Ni3+/Ni2+ of NiO-S, which achieved better electronic properties. Furthermore, in terms of commercial production, the template-free preparation of NiO-S eliminated one step, saving time and cost. Therefore, the sensors based on NiO-S will serve as candidates for ethanol sensing.