One of the effective ways to reduce the material consumption of structures, to save all types of resources due to this, is the transition to porous constructional materials instead of traditional dense materials. In this regard, non-autoclaved gas concrete is of great interest. This material has a high manufacturability and has a good potential for improving the strength properties due to the replacement of traditional portland cement by special composite binders. Available publications confirm the effectiveness and prospects of this direction. An important disadvantage of such works is the fact that the binder indicators and the final cellular concrete characteristics are considered mainly independently. In our opinion, it is more correct to consider at least two structure-forming processes proceeding in parallel and sequentially at different scale levels. Micro level is a stone structure formation based on the composite binder; macro-level is a gas porization of cellular mass concrete. These processes have a great mutual influence on each other, and therefore this article attempts to observe the gassing products effect on the stone hardening based on composite binders, as well as the composite binder makeup on the viscosity change of the molding compound, as an important condition for the formation of high-quality less defective pore structure of cellular concrete.