Ecological restoration has great potential for reversing anthropogenic degradation, as it aims at the simultaneous recovery of several ecosystem functions and services. However, it can be challenging to evaluate multiple restoration targets based on a high number of indicators, and this calls for a multifunctionality approach. Multifunctionality is an integrated measure of the relative supply of multiple ecosystem functions or services. As temporal aspects are of key importance for ecosystem recovery, we analyzed multifunctionality against time since restoration. We used rewetted peatlands in a mountainous region in Central Germany as a study case. Restored peatlands are expected to become multifunctional, while their recovery is rather slow.We investigated to what extent rewetted peatlands recover, and how time since restoration controls the simultaneous development of multiple ecosystem properties. We studied restored peatlands with respect to plant diversity, water table, peat decomposition, water holding capacity, and nutrient level using a chronosequence of 0-18 yr after restoration. We analyzed the development of individual properties and of a combined index. We further compared the recovery of restored sites at different ages to an intact reference peatland and to a theoretical optimum value, defined as the mean of the eleven most desirable values observed. Eleven out of 13 peatland properties and the combined index significantly evolved with time since restoration. Nevertheless, we could not observe a consistent trend of multiple properties if aiming at highest levels of functioning, whereas there was progress with time if low or intermediate functioning is targeted. Our results show that not all functions of restored peatlands can recover to the most desirable extent within 18 yr. However, the average functionality and some individual properties achieved levels comparable to the reference site, highlighting that improvement is possible. While the integrated assessment informs about the degree of ecosystem recovery, an additional analysis of individual properties helps understanding ecosystem-specific dynamics, which are needed for making decisions on potential future management.