Tracking devices have become small enough to be widely applied to arthropods to study their movement. However, possible side effects of these devices on arthropod performance and behaviour are rarely considered. We performed a systematic review of 173 papers about research in which tracking devices—radio frequency identification (RFID), harmonic radar and radio telemetry tags—were attached to terrestrial arthropods. The impact of such tags was quantified in only 12% of the papers, while in 40% the potential impact was completely disregarded. Often‐cited rules of thumb for determining appropriate tag weight had either no empirical basis or were misconstrued. Several properties of a tracking device (e.g. weight, balance, size, drag) can affect different aspects of an arthropod's life history (e.g. energy, movement, foraging, mating). The impact can differ among species and environments. Taken together, these tag effects can influence the reliability of obtained movement data and conclusions drawn from them. We argue that the impact of tracking devices on arthropods should be quantified for each (a) study species, (b) tag type, and (c) environmental context. As an example, we include a low‐effort impact study of the effect of an RFID tag on a digger wasp. Technological advancements enable studying the movement of arthropods in unprecedented detail. However, we should adopt a more critical attitude towards the use of tracking devices on terrestrial arthropods. The benefits of tracking devices should be balanced against their potential side effects on arthropods and on the reliability of the resulting data.
Background & aim-In general, biodiversity has positive effects on ecosystem functioning. In forests, understorey vegetation is influenced by both the composition and species richness of the overstorey through species-specific effects on environmental conditions at the forest floor. Forest fragmentation is also known to influence understorey vegetation composition and richness. However, the combined effects of tree species diversity and forest fragmentation have not been studied yet. With the TREEWEB research platform, consisting of 53 forest plots along a tree species diversity and forest fragmentation gradient, we aim to unravel the combined effects of tree species diversity, tree species identity and forest fragmentation on the understorey composition and diversity. Methods-The TREEWEB platform includes forest plots of three tree species richness levels, containing all possible species combinations of Quercus robur, Quercus rubra and Fagus sylvatica. Complete dilution is avoided in the design, allowing separation between tree species identity and diversity effects. Vegetation surveys were conducted in all plots to investigate the species richness, species diversity, compositional turnover and cover of the herb layer as well as the shrub layer cover. Key results-Within the TREEWEB platform, overstorey-understorey diversity relationships were mainly characterised by tree species identity effects. No clear effects of tree species diversity and forest fragmentation on understorey composition and diversity were found. Conclusion-Tree species identity effects were most important in explaining the observed patterns in the understorey vegetation. Further in-depth research will allow us to disentangle which mechanisms underlie these patterns and whether effects of fragmentation are more pronounced at higher trophic levels.
How multitrophic relationships between wildlife communities and their ectoparasitic vectors interact to shape the diversity of vector-borne microorganisms is poorly understood. Nested levels of dependence among microbes, vectors, and vertebrate hosts may have complicated effects on both microbial community assembly and evolution. We examined Bartonella sequences from European bats and their ectoparasites with a combination of network analysis, Bayesian phylogenetics, tipassociation and cophylogeny tests, and linear regression to understand the ecological and evolutionary processes that shape parasite communities. We detected seven batectoparasite-Bartonella communities that can be differentiated based on bat families and roosting patterns. Tips of the Bartonella tree were significantly clustered by host taxonomy and geography. We also found significant evidence of evolutionary congruence between bat host and Bartonella phylogenies, indicating that bacterial species have evolved to infect related bat species. Exploring these ecological and evolutionary associations further, we found that sharing of Bartonella species among bat hosts was strongly associated with host phylogenetic distance and roost sharing and less strongly with geographic range overlap. Ectoparasite sharing between hosts was strongly predicted by host phylogenetic distance, roost sharing, and geographic overlap but had no additive effect on Bartonella sharing. Finally, historical Bartonella host-switching was more frequent for closely related bats after accounting for sampling bias among bat species. This study helps to disentangle the complex ecology and evolution of Bartonella bacteria in bat species and their arthropod vectors. Our work provides insight into the important mechanisms that partition parasite communities among hosts, particularly the effect of host phylogeny and roost sharing, and could help to elucidate the evolutionary patterns of other diverse vector-borne microorganisms.
Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.