Understanding the ecological, behavioural and genetic factors influencing animal social systems is crucial to investigating the evolution of sociality. Despite the recent advances in population genetic methods and the analysis of social interactions, long-term studies exploring the causes and consequences of social systems in wild mammals are rare. Here, we provide a synthesis of 15 years of data on the Bechstein's bat (Myotis bechsteinii), a species that raises its young in closed societies of 10-45 females living together for their entire lives and where immigration is virtually absent. We discuss the potential causes and consequences of living in closed societies, based on the available data on Bechstein's bat and other species with similar social systems. Using a combination of observational and genetic data on the bats together with genetic data on an ecto-parasite, we suggest that closed societies in Bechstein's bats are likely caused by a combination of benefits from cooperation with familiar colony members and parasite pressure. Consequences of this peculiar social system include increased sensitivity to demographic fluctuations and limits to dispersal during colony foundation, which have broad implications for conservation. We also hope to illustrate by synthesizing the results of this long-term study the diversity of tools that can be applied to hypothesize about the factors influencing a species' social system. We are convinced that with the expansion of the number of social mammals for which comparably detailed socio-genetic long-term data are available, future comparative studies will provide deeper insights into the evolution of closed societies.
Aim We examined the phylogeography of the cold-temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic.Location North Pacific and North Atlantic oceans (42°to 77°N).Methods We genotyped individuals from 23 populations for a mitochondrial DNA (mtDNA) intergenic spacer (IGS) (n = 608) and the cytochrome c oxidase subunit I (COI) region (n = 276), as well as for six nuclear microsatellite loci (n = 592). Phylogeographic structure and connectivity were assessed using population genetic and phylogenetic network analyses.
“Monogamy” refers to different components of pair exclusiveness: the social pair, sexual partners, and the genetic outcome of sexual encounters. Avian monogamy is usually defined socially or genetically, whereas quantifications of sexual behavior remain scarce. Jackdaws (Corvus monedula) are considered a rare example of strict monogamy in songbirds, with lifelong pair bonds and little genetic evidence for extrapair (EP) offspring. Yet jackdaw copulations, although accompanied by loud copulation calls, are rarely observed because they occur visually concealed inside nest cavities. Using full-day nest-box video surveillance and on-bird acoustic bio-logging, we directly observed jackdaw sexual behavior and compared it to the corresponding genetic outcome obtained via molecular parentage analysis. In the video-observed nests, we found genetic monogamy but frequently detected forced EP sexual behavior, accompanied by characteristic male copulation calls. We, thus, challenge the long-held notion of strict jackdaw monogamy at the sexual level. Our data suggest that male mate guarding and frequent intrapair copulations during the female fertile phase, as well as the forced nature of the copulations, could explain the absence of EP offspring. Because EP copulation behavior appeared to be costly for both sexes, we suggest that immediate fitness benefits are an unlikely explanation for its prevalence. Instead, sexual conflict and dominance effects could interact to shape the spatiotemporal pattern of EP sexual behavior in this species. Our results call for larger-scale investigations of jackdaw sexual behavior and parentage and highlight the importance of combining social, sexual, and genetic data sets for a more complete understanding of mating systems.
BackgroundThe population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein’s bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns.ResultsWe found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts.ConclusionsOur results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host.
During autumn in the temperate zone of both the new and old world, bats of many species assemble at underground sites in a behaviour known as swarming. Autumn swarming behaviour is thought to primarily serve as a promiscuous mating system, but may also be related to the localization and assessment of hibernacula. Bats subsequently make use of the same underground sites during winter hibernation, however it is currently unknown if the assemblages that make use of a site are comparable across swarming and hibernation seasons. Our purpose was to characterize the bat assemblages found at five underground sites during both the swarming and the hibernation season and compare the assemblages found during the two seasons both across sites and within species. We found that the relative abundance of individual species per site, as well as the relative proportion of a species that makes use of each site, were both significantly correlated between the swarming and hibernation seasons. These results suggest that swarming may indeed play a role in the localization of suitable hibernation sites. Additionally, these findings have important conservation implications, as this correlation can be used to improve monitoring of underground sites and predict the importance of certain sites for rare and cryptic bat species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.