The bistability of
molecular switches is an essential characteristic
in their use as functional components in molecular-based devices and
machines. For photoswitches, light-driven switching between two stable
states proceeds via short-lived changes of the bond order in electronically
excited states. Here, bistable switching of a ditertbutyl-substituted
spiropyran photoswitch is instead demonstrated by oxidation and subsequent
reduction in an overall four-state cycle. The spiropyran structure
chosen has reduced sensitivity to the effect of secondary electrochemical
processes such as H
+
production and provides transient
access to a decreased thermal
Z
–
E
isomerization barrier in the one electron oxidized state, akin to
that achieved in the corresponding photochemical path. Thus, we show
that the energy needed for switching spiropyrans to the merocyanine
form on demand, typically delivered by a photon, can instead be provided
electrochemically. This opens up further opportunities for the utilization
of spiropyrans in electrically controlled applications and devices.