Background:
Abnormal immune responses, particularly T-cell activity, are linked to vascular complications in hypertension, but mechanisms remain unknown. Our study aims to explore the association between arterial stiffness, assessed by brachial–ankle pulse wave velocity (baPWV), and T-cell receptor (TCR) repertoires in essential hypertension patients, focusing on understanding the role of T cells in the development of arterial stiffness in this population.
Methods:
The study included 301 essential hypertension patients and 48 age-matched normotensive controls. Essential hypertension patients were stratified into high (baPWV ≥1400 cm/s, n = 213) and low (baPWV <1400 cm/s, n = 88) baPWV groups. High-throughput sequencing analyzed peripheral TCRβ repertoires.
Results:
Significant TCRβ repertoire differences were observed between essential hypertension and normotensive groups, as well as between high and low baPWV essential hypertension subgroups. Specifically, patients in the high baPWV group exhibited notable variations in the utilization of specific TCR beta joining (TRBJ) and variable (TRBV) genes compared to the low baPWV group. These alterations were accompanied by reduced TCRβ diversity (represented by diversity 50 s), increased percentages of the largest TCRβ clones, and a higher number of TCRβ clones exceeding 0.1%. The presence of specific TCRβ clones was detected in both groups. Furthermore, reduced diversity 50s and elevated percentages of the largest TCRβ clones were independently correlated with baPWV, emerging as potential risk factors for increased baPWV in essential hypertension patients.
Conclusion:
TCR repertoires were independently associated with arterial stiffness in patients with essential hypertension, implicating a potential role for dysregulated T-cell responses in the pathogenesis of arterial stiffness in this patient population.
Trial registration: ChiCTR2100054414.