Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as "molecular wires". This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics that govern electron transport capabilities in one-dimensional conjugated chains so that we can better define the design principles for conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semiempirical calibration curve between the changes in the ν(C≡N) infrared (IR) shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR line width in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤kBT, likely controlled by the movement of dihedral angles between monomer units. Implications for the electron transport capability in molecular wires are discussed.