Coarse graining of (geophysical) flow problems is a necessity brought upon us by the wide range of spatial and temporal scales present in these problems, which cannot be all represented on a numerical grid without an inordinate amount of computational resources. Traditionally, the effect of the unresolved eddies is approximated by deterministic closure models, i.e. so-called parameterizations. The effect of the unresolved eddy field enters the resolved-scale equations as a forcing term, denoted as the 'eddy forcing'. Instead of creating a deterministic parameterization, our goal is to infer a stochastic, data-driven surrogate model for the eddy forcing from a (limited) set of reference data, with the goal of accurately capturing the long-term flow statistics. Our surrogate modelling approach essentially builds on a resampling strategy, where we create a probability density function of the reference data that is conditional on (time-lagged) resolved-scale variables. The choice of resolved-scale variables, as well as the employed time lag, is essential to the performance of the surrogate. We will demonstrate the effect of different modelling choices on a simplified ocean model of two-dimensional turbulence in a doubly periodic square domain.
CCS CONCEPTS• Mathematics of computing → Stochastic processes; • Computing methodologies → Multiscale systems; • Applied computing → Environmental sciences.