2018
DOI: 10.1021/acs.iecr.8b00033
|View full text |Cite
|
Sign up to set email alerts
|

Reduced Order Optimization of Large-Scale Nonlinear Systems with Nonlinear Inequality Constraints Using Steady State Simulators

Abstract: Technological advances have led to the widespread use of computational models of increasing complexity, in both industry and everyday life. This helps to improve the design, analysis and operation of complex systems. Many computational models in the field of engineering consist of systems of coupled nonlinear partial differential equations (PDEs). As a result, optimization problems involving such models may lead to computational issues because of the large number of variables arising from the spatiotemporal di… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2018
2018
2020
2020

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 34 publications
0
1
0
Order By: Relevance
“…Two works in this special issue address the management of dynamic systems, including batch and semibatch processes, quite usual in the biopharmaceuticals industry, and propose applicable optimization strategies for them: Aydin et al 20 proposes the combination of the indirect solution scheme with a parsimonious input parametrization, and Kappatou et al 21 report reductions in the computational load through the application of model structure reformulation strategies (function smoothening, model size reduction, and scaling). Petsagkourakis et al 22 also propose the use of model reduction strategies to address the optimization of complex large-scale steady-state systems involving nonlinear inequality constraints.…”
mentioning
confidence: 99%
“…Two works in this special issue address the management of dynamic systems, including batch and semibatch processes, quite usual in the biopharmaceuticals industry, and propose applicable optimization strategies for them: Aydin et al 20 proposes the combination of the indirect solution scheme with a parsimonious input parametrization, and Kappatou et al 21 report reductions in the computational load through the application of model structure reformulation strategies (function smoothening, model size reduction, and scaling). Petsagkourakis et al 22 also propose the use of model reduction strategies to address the optimization of complex large-scale steady-state systems involving nonlinear inequality constraints.…”
mentioning
confidence: 99%