Algorithms for the numerical solution of the Eikonal equation discretized with tetrahedra are discussed. Several massively parallel algorithms for GPU computing are developed. This includes domain decomposition concepts for tracking the moving wave fronts in sub-domains and over the sub-domain boundaries. Furthermore a low memory footprint implementation of the solver is introduced which reduces the number of arithmetic operations and enables improved memory access schemes. The numerical tests for different meshes originating from the geometry of a human heart document the decreased runtime of the new algorithms.