In Compressive Sensing MRI (CS-MRI), measurement matrix learning has been developed as a promising method for measurement matrix designing. Research on MRI measurement task suggests that Relative 2-Norm Error (RLNE) of measurement images is imbalanced. However, current learning-based investigations suffer from the lack of probing imbalanced characteristic on measurement matrix learning. In this paper, we propose a novel Measurement Matrix Learning via Correlation Reweighting (MML-CR) approach for exploring and solving this problem by optimizing reweighted model. Specifically, we introduce a reweighting expected minimization model to obtain an essential measurement matrix in k-space. Besides, we propose an example correlation regularizer to prevent trivial solution for learning weights. Furthermore, we present an alternating solution and perform convergence analysis for the optimization. We also demonstrate quantitative and qualitative experimental results which show that our algorithm outperforms several state-of-art measurements methods. Compared with conventional methods, MML-CR achieves better performance on universal task. CCS CONCEPTS • Computing methodologies → Reconstruction.