Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Water leaching and hydrothermal carbonization are tools to upgrade biomass residues for combustion. Water leaching reduces the ash content, which increases the heating value, while hydrothermal carbonization (HTC) increases heating value and ash content and decreases the organic fraction of the fuel. The objective of this study is to investigate, whether low temperature hydrothermal treatment (HTT) of biomass residues can combine the positive aspects of both treatments and avoid the negative aspects: a decrease of the ash content (leaching) instead of an increase (HTC) and a strong increase of the heating value by deoxygenation (HTC) instead of a low increase by ash reduction (leaching). Sawdust, conifer bark, black locust bark, green cuttings, and leaves were treated at 150 °C, 170 °C and 185 °C in a batch reactor. The impact of the three treatments on combustion properties, inorganic element reduction, and organic compound formation in the liquid phase were investigated. All biomass residues, except sawdust treated at 150 °C, showed increased heating values and reduced ash contents. The intensity of the heating value increases, and the reduction rates of selected ash elements were discussed, including a comparison of literature values and a short review on organic reaction and formation processes at low temperature and pressure conditions.
Water leaching and hydrothermal carbonization are tools to upgrade biomass residues for combustion. Water leaching reduces the ash content, which increases the heating value, while hydrothermal carbonization (HTC) increases heating value and ash content and decreases the organic fraction of the fuel. The objective of this study is to investigate, whether low temperature hydrothermal treatment (HTT) of biomass residues can combine the positive aspects of both treatments and avoid the negative aspects: a decrease of the ash content (leaching) instead of an increase (HTC) and a strong increase of the heating value by deoxygenation (HTC) instead of a low increase by ash reduction (leaching). Sawdust, conifer bark, black locust bark, green cuttings, and leaves were treated at 150 °C, 170 °C and 185 °C in a batch reactor. The impact of the three treatments on combustion properties, inorganic element reduction, and organic compound formation in the liquid phase were investigated. All biomass residues, except sawdust treated at 150 °C, showed increased heating values and reduced ash contents. The intensity of the heating value increases, and the reduction rates of selected ash elements were discussed, including a comparison of literature values and a short review on organic reaction and formation processes at low temperature and pressure conditions.
In comparison to lignocellulosic biomass, which is suitable for thermo-chemical valorization, the organic fraction of municipal solid waste (OFMSW) is mainly treated via composting or anaerobic digestion (AD). An efficient utilization of OFMSW is difficult due to variations in its composition. Based on the characteristics of OFMSW, hydrothermal treatment (HTT) experiments at temperatures < 200 °C as an alternative OFMSW-processing were evaluated in this study. The raw OFMSW was characterized with a dry matter (DM)-based organic dry matter (oDM) content of 77.88 ± 1.37 %DM and a higher heating value (HHV) of 15,417 ± 1258 J/gDM. Through HTT at 150, 170 and 185 °C, the oDM contents as well as H/C and O/C ratios were lowered while the HHV increased up to 16,716 ± 257 J/gDM. HTT led to improved fuel properties concerning ash melting, corrosion stress and emission behavior. Negative consequences of the HTT process were higher contents of ash in the biochar as well as accumulated heavy metals. In the sense of a bioeconomy, it could be beneficial to first convert raw OFMSW into CH4 through AD followed by HTT of the AD-digestate for the generation of solid fuels and liquid products. This could increase the overall utilization efficiency of OFMSW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.