Objectives: This study investigated the ability of immunity-and matrix-regulatory cells (IMRCs) to improve cognitive function in a rat model of vascular cognitive impairment.
Materials and Methods:A chronic cerebral hypoperfusion (CCH) model was established in rats via permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). The rats then received intravenous injections of IMRCs or saline. A single injection of different doses of IMRCs (1 Â 10 6 cells/rat, 2 Â 10 6 cells/ rat, or 4 Â 10 6 cells/rat) was administered via tail vein 72 h after establishment of the model. To evaluate functional recovery, the rats were subjected to behavioural tests after 30 days of CCH. Imaging, western blotting, immunofluorescence staining, and quantitative real-time PCR were used to analyse neuroinflammation and white matter injury after 14 and 40 days of CCH. RNA sequencing (RNA-seq) was used to profile gene expression changes in copine 1 (CPNE1) in response to IMRCs treatment.