1977
DOI: 10.1007/bf02294050
|View full text |Cite
|
Sign up to set email alerts
|

Redundancy analysis an alternative for canonical correlation analysis

Abstract: A component method is presented maximizing Stewart and Love's redundancy index. Relationships with multiple correlation and principal component analysis are pointed out and a rotational procedure for obtaining bi-orthogonal variates is given. An elaborate example comparing canonical correlation analysis and redundancy analysis on artificial data is presented.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
286
0
14

Year Published

1980
1980
2017
2017

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 715 publications
(301 citation statements)
references
References 3 publications
1
286
0
14
Order By: Relevance
“…Redundancy analysis (RDA) [31] is an enhancement of PCA. Ordination axes are not only a linear combination of primary variables, but also a linear combination of further external variables.…”
Section: Data Analysis and Statisticsmentioning
confidence: 99%
“…Redundancy analysis (RDA) [31] is an enhancement of PCA. Ordination axes are not only a linear combination of primary variables, but also a linear combination of further external variables.…”
Section: Data Analysis and Statisticsmentioning
confidence: 99%
“…This multiple-causes/multiple-effects model shows that manifest variables can be direct causes of latent variables and vice versa. This model bears a strong resemblance to the analytic models described as "MIMIC" (Joreskog & Goldberger, 1975) and "canonical redundancy" (van den Wollenberg, 1977 The interrelationship of the latent h illustrates direct feedback loops. This type of causal construction (nonintuitively termed "recursive" after the equational form of D) must be causally interpreted as "hi I causes h l 2 and h l 2 causes h l l ."…”
Section: Factor Analysismentioning
confidence: 73%
“…Analiza redundancji (RDA [Rao 1964;van den Wollenberg 1977]) jest kanoniczną formą analizy składowych głównych i przeprowadzana jest w 2 krokach [Legendre, Legendre 2012]. Krok 1 polega na zbudowaniu wielowymiarowych modeli regresji liniowej Y względem X, tak aby uzyskać macierz wartości teoretycznych:…”
Section: Liniowe Techniki Ordynacyjne I Ich Prezentacja Graficznaunclassified