2017
DOI: 10.15611/pn.2017.468.16
|View full text |Cite
|
Sign up to set email alerts
|

Visualization of the Linear Ordination Techniques Results Using an Example of the Analysis of Property Crime in Poland

Abstract: Streszczenie: Zaletą liniowych technik ordynacyjnych (analizy głównych składowych -PCA i analizy redundancji -RDA) jest m.in. możliwość prezentacji graficznej uzyskanych wyników w przestrzeni dwuwymiarowej z wykorzystaniem diagramów ordynacyjnych (biplotów i triplotów). W pracy omówiono metody wizualizacji wyników PCA i RDA oraz zwrócono uwagę na rolę metod graficznych przy interpretacji uzyskanych wyników. Ze względu na wykorzystane w przykładzie dane liczbowe, szczegółowym celem pracy jest ocena wpływu wybra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 10 publications
(6 reference statements)
0
2
0
Order By: Relevance
“…It turned out that similar PCA clusters are observed for all water bodies, therefore an exploratory model was run for all water bodies studied. Both PCA and RDA are exploratory data analysis techniques used to detect relationships between variables and to present data structure; they can be used as preliminary methods before more formal data analysis methods are applied (Misztal, 2017).…”
Section: Statisticsmentioning
confidence: 99%
See 1 more Smart Citation
“…It turned out that similar PCA clusters are observed for all water bodies, therefore an exploratory model was run for all water bodies studied. Both PCA and RDA are exploratory data analysis techniques used to detect relationships between variables and to present data structure; they can be used as preliminary methods before more formal data analysis methods are applied (Misztal, 2017).…”
Section: Statisticsmentioning
confidence: 99%
“…In the charts, vectors show the explanatory (LA, V, H, and ST AWT) and explained (average ice thickness-AIT and maximum ice thickness-MIT) variables; the water bodies studied are also shown, depicted as points (Figure 5). The direction of the vector corresponds to the direction of the greatest variability of the explanatory variable, and its magnitude is proportional to the significance of this variable (Misztal, 2017). The closer a point depicting the object in question is to a given variable, the more the phenomenon in question is correlated with that variable.…”
Section: Ice Thicknessmentioning
confidence: 99%