The water demand of crops, as well as the relation of this variable to productivity and other important factors related to the sustainable management of agriculture, makes it relevant to estimate parameters that help in the most assertive and efficient decision-making in the agricultural environment. In this context, the work aims to estimate the actual evapotranspiration (ETa), biomass (Bio), water productivity (WP) and crop productivity (P), using the Landsat-8 satellite, through the Modified Satellite Priestley-Taylor Algorithm (MS-PT). For this, ETa was estimated for maize culture irrigated by central pivots, using the MS-PT with six images of Landsat-8, which were free of clouds. The ETa estimate was accurate in the first 60 days after emergence (DAE) of the crop. Subsequently, the variables Bio, P, and WP were estimated using the ETa and the assumptions of the Monteith (1972) model. Therefore, we sequentially calculated the dry biomass, crop productivity and water productivity. ETa presented a high correlation with Bio from the second image (06/10/2015), due to the canopy closure of the crop and, consequently, the predominance of transpiration in the evapotranspiration phenomenon. The water productivity was constant throughout the maximum vegetative stage until the reproductive phase R4 of the crop, verifying in this interval the best efficiency in the conversion of water in biomass. From the obtained results, it is verified that the set of algorithms used in the estimation of the parameters demonstrated the potential to increase the capacity to handle agriculture in a more efficient, assertive and sustainable way.