Reference-frame-independent quantum key distribution (RFI QKD) protocol can reduce the requirement on the alignment of reference frames in practical systems. However, comparing with the Bennett-Brassard (BB84) QKD protocol, the main drawback of RFI QKD is that Alice needs to prepare six encoding states in the three mutually unbiased bases (X, Y ,and Z), and Bob also needs to measures the quantum state with such three bases. Here, we show that the RFI QKD protocol can be secured in the case where Alice sends fewer states. In particular, we find that transmitting three states (two eigenstates of the Z basis and one of the eigenstates in the X basis) is sufficient to obtain the comparable secret key rates and the covered distances, even when the security against coherent attacks with statistical fluctuations of finite-key size is considered. Finally, a proof-of-principle experiment based on time-bin encoding is demonstrated to show the feasibility of our scheme, and its merit to simplify the experimental setup.