The issues of optimizing the operation of micro hydropower plants in conditions of water scarcity, performed by additional connection to the grid of an energy storage system and wind power turbine, as well as optimal load management, are considered. It is assumed that the load of the system is a concentrated autonomous power facility that consumes only active power. The paper presents a rigorous mathematical formulation of the problem, the solution of which corresponds to the minimum cost of an energy storage system and a wind turbine, which allows for uninterrupted supply of electricity to power facilities in conditions of water shortage necessary for the operation of micro hydropower plants (under unfavorable hydrological conditions). The problem is formulated as a nonlinear multi-objective optimization problem to apply metaheuristic stochastic algorithms. At the same time, a significant part of the problem is taken out and framed as a subproblem of linear programming which will make it possible to solve it by a deterministic simplex method that guarantees to find the exact global optimum. This approach will significantly increase the efficiency of solving the entire problem by combining metaheuristic algorithms and taking into account expert knowledge about the problem being solved.