Proton homonuclear two-dimensional (2D) NOE spectra were obtained for the decamer [d(ATATATAUAT)], as a function of mixing time, and proton resonance assignments were made. Quantitative assessment of the 2D NOE cross-peak intensities was used in conjunction with the program MARDIGRAS, which entails a complete relaxation matrix analysis of the 2D NOE peak intensities, to obtain a set of upper and lower bound interproton distance constraints. The analysis with MARDIGRAS was carried out using three initial models: A-DNA, B-DNA and Z-DNA. The distance constraints determined were essentially the same regardless of initial structure. These experimental structural constraints were used with restrained molecular dynamics calculations to determine the solution structure of the decamer. The molecular dynamics program AMBER was run using A-DNA or B-DNA as starting model. The root-mean-square (rms) difference between these two starting models is 0.504 nm. The two starting models were subjected to 22.5 ps of restrained molecular dynamics calculations. The coordinates of the last 10.5 ps of the molecular dynamics runs were averaged to give two final structures, MDA and MDB. The rms difference between these two structures is 0.09 nm, implying convergence of the two molecular dynamics runs. The 2D NOE spectral intensities calculated for the derived structures are in good agreement with experimental spectra, based on sixth-root residual index analysis of intensities. A detailed examination of the structural features suggests that while the decamer is in the B-family of DNA structures, many torsion angle and helical parameters alternate from purine to pyrimidine, with kinks occurring at the U-A steps.