The solution structure of the self-complementary dodecamer 5'd(CGCGPATTCGCG)2, containing a purine-thymine base pair within the hexameric canonical recognition site GAATTC for the restriction endonuclease EcoRI, is investigated by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Nonexchangeable and exchangeable protons are assigned in a sequential manner. A set of 228 approximate interproton distance restraints are derived from two-dimensional nuclear Overhauser enhancement spectra recorded at short mixing times. These distances are used as the basis for refinement using restrained molecular dynamics in which the interproton distance restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight calculations are carried out, four starting from classical A-DNA and four from classical B-DNA. In all cases convergence to very similar B-type structures is achieved with an average atomic root mean square (rms) difference between the eight converged structures of 0.7 +/- 0.2 A, compared to a value of 6.5 A for that between the two starting structures. It is shown that the introduction of the purine-thymine mismatch does not result in any significant distortion of the structure. The variations in the helical parameters display a clear sequence dependence. The variation in helix twist and propeller twist follows Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. Overall the structure is straight. Closer examination, however, reveals that the central 5 base pair steps describe a smooth bend directed toward the major groove with a radius of curvature of approximately 38 A, which is compensated by two smaller kinks in the direction of the minor groove at base pair steps 3 and 9. These features can be explained in terms of the observed variation in roll and slide.
The solution structure of the self-complementary DNA decamer 5'd(CTGGATCCAG)2 comprising the specific target site for the restriction endonuclease BamH1 is investigated by using nuclear magnetic resonance sectroscopy and restrained molecular dynamics. With the exception of the H5'/H5" sugar proton resonances, all the nonexchangeable proton resonances are assigned sequentially by using pure-phase absorption two-dimensional nuclear Overhauser enhancement spectroscopy. From the time dependence of the nuclear Overhauser effects a set of 160 approximate interproton distances is determined and used as the basis of a structure refinement employing restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 5.7 A]. In both cases convergence is achieved to very similar B-type structures with an atomic rms difference of 0.9 A which is comparable to the rms fluctuations of the atoms about their average positions. In addition, the rms difference between the experimental and calculated values of the interproton distances for both average restrained dynamics structures is approximately 0.3 A. These results suggest that the converged restrained molecular dynamics structures represent reasonable approximations of the solution structure. The average restrained dynamics structures exhibit clear sequence-dependent variations of torsion angles and helical parameters. In addition, the structures exhibit a small bend of around 10-20 degrees at the second (TpG) and eighth (CpA) base pair steps. This can be attributed to the positive base roll angles and large base pair slide values at the two Pyr-Pur steps. The central core of the decamer comprising the six-base recognition site for BamH1 (GGATCC), however, is straight.
The interactions of nucleic acids technology and the technology of arrayed nucleic acids are described, showing the interdependence of nucleic acids chemistry, surface chemistry, (micro-) technology and the requirements of bio-medical applications. The methods and problems of the production of large numbers of oligonucleotides as well as the methods of arraying oligonucleotides are highlighted. The basic approaches, in-situ synthesis and postsynthetic immobilization, are described with a special emphasis on the postsynthetic immobilization of ready-made oligonucleotides on support materials. Techniques for the detection of nucleic acids interactions on arrays are outlined in brief.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.