mRNA-based
therapies and vaccines constitute a disruptive technology
with the potential to revolutionize modern medicine. Chemically modified
5′ cap structures have provided access to mRNAs with superior
translational properties that could benefit the currently flourishing
mRNA field. Prime examples of compounds that enhance mRNA properties
are antireverse cap analog diastereomers that contain an O-to-S substitution
within the β-phosphate (β-S-ARCA D1 and D2), where D1
is used in clinically investigated mRNA vaccines. The compounds were
previously found to have high affinity for eukaryotic translation
initiation factor 4E (eIF4E) and augment translation
in vitro
and
in vivo
. However, the molecular basis for the
beneficial “thio-effect” remains unclear. Here, we employed
multiple biophysical techniques and captured 11 cap analog-eIF4E crystallographic
structures to investigate the consequences of the β-O-to-S or
-Se substitution on the interaction with eIF4E. We determined the
S
P
/
R
P
configurations
of β-S-ARCA and related compounds and obtained structural insights
into the binding. Unexpectedly, in both stereoisomers, the β-S/Se
atom occupies the same binding cavity between Lys162 and Arg157, indicating
that the key driving force for complex stabilization is the interaction
of negatively charged S/Se with positively charged amino acids. This
was observed for all structural variants of the cap and required significantly
different conformations of the triphosphate for each diastereomer.
This finding explains why both β-S-ARCA diastereomers have higher
affinity for eIF4E than unmodified caps. Binding affinities determined
for di-, tri-, and oligonucleotide cap analogs suggested that the
“thio-effect” was preserved in longer RNAs. Our observations
broaden the understanding of thiophosphate biochemistry and enable
the rational design of translationally active mRNAs and eIF4E-targeting
drugs.