Purpose: The use of rodent models for diabetes, particularly with pancreatic islet transplantation, has been prevalent in various preclinical trials. The purpose of this study is to establish a diabetes mellitus (DM) model in Sprague Dawley (SD) rats using alloxan evaluated by assessing alloxan dosage, the induction rate of diabetes, and glucose stability through insulin treatment.
Methods: Over the course of 13 experimental rounds, diabetes was induced in 86 SD rats using alloxan at concentrations of 200 mg/kg (16 rats) or 150 mg/kg (70 rats). Various parameters, including diabetes induction rates, average insulin doses, extent of weight loss, and adverse effects such as diabetic ketoacidosis (DKA), were measured.
Results: The administration of 200 mg/kg of alloxan in rats resulted in severe diabetes induction, leading to DKA in three individuals, despite daily insulin glargine administration, DKA prevention was unsuccessful. The stability of alloxan decreases over time, especially when refrigeration is compromised during weighing. In the group treated with 150 mg/kg of alloxan, the diabetes induction rate was 83%. The average insulin dose was 2.21 units/kg/day. In contrast, the group treated with 200 mg/kg of alloxan exhibited a diabetes induction rate of 81% with a statistically significant higher average insulin requirement at 7.58 units/kg/day compared to 150 mg/kg of alloxan.
Conclusion: Inducing diabetes in rats with 150 mg/kg of alloxan is considered more suitable for creating a diabetes model for xenogeneic islet transplantation compared to using 200 mg/kg of alloxan. This is due to fewer complications related to DKA or hyperglycemia and reduced need for exogenous insulin treatment.