Donor nerves of different origins, when transplanted onto a previously denervated adult crayfish abdominal superficial flexor muscle (SFM), regenerate excitatory synaptic connections. Here we report that an inhibitory axon in these nerves also regenerates synaptic connections based on observation of nerve terminals with irregular to elliptically shaped synaptic vesicles characteristic of the inhibitory axon in aldehyde fixed tissue. Inhibitory terminals were found at reinnervated sites in all 12 allotransplanted-SFMs, underscoring the fact that the inhibitory axon regenerates just as reliably as the excitatory axons. At sites with degenerating nerve terminals and at sparsely reinnervated sites, we observe densely stained membranes, reminiscent of postsynaptic membranes, but occurring as paired, opposing membranes, extending between extracellular channels of the subsynaptic reticulum. These structures are not found at richly innervated sites in allotransplanted SFMs, in control SFMs, or at several other crustacean muscles. Although their identity is unknown, they are likely to be remnant postsynaptic membranes that become paired with collapse of degenerated nerve terminals of excitatory and inhibitory axons. Because these two axons have uniquely different receptor channels and intramembrane structure, their remnant postsynaptic membranes may therefore attract regenerating nerve terminals to form synaptic contacts selectively by excitatory or inhibitory axons, resulting in postsynaptic specification.