Plants often form the basis of conservation planning and management. The effectiveness of plant diversity as a surrogate for arthropod diversity was assessed in natural areas in the Kogelberg Biosphere Reserve, a floral endemism hotspot in the Cape Floristic Region (CFR), South Africa. Arthropods and plants were sampled across 30 topographically heterogeneous sites in a spatially nested design. The relationship between plants and arthropods were quantified in terms of species richness, assemblage variation, and assemblage turnover. The influence of arthropod trophic groups, habitat association, and spatial scale were also explored. Generalized dissimilarity modelling was used to investigate differential influence of explanatory groups (geology, disturbance, local site characteristics, refuge, mesoclimate, terrain) on arthropod and plant turnover. Congruence in assemblage variation was restricted to local scales, and only present between plants and those arthropods associated with the foliar component of the habitat. Weak congruence in species turnover was due to differences in the relative importance of explanatory groups, with different variables within each explanatory group being important, and similar variables predicting different turnover patterns. For both groups, variables related to geology and fire history were important for assemblage turnover. These variables are already incorporated in conservation planning and management for plant diversity across the CFR. Overall plant diversity was a weak surrogate for the arthropod groups included in this study, suggesting that as an alternative, environmental surrogates for arthropod diversity perform better.