Surface-mounted permanent magnet synchronous machine with concentrated windings (cwSPMSM) is a highperformance drive machine and has been adopted in many applications. The difficulty of implementing its sensorless control at low and zero speeds is its multiple saliencies, which is much more significant than most other ac machines. The traditional decoupling methods provide successful results only under the condition that high-order saliencies are not stronger than half of the primary saliency. Furthermore, the behavior of the multiple saliencies is principally frequency dependent. Based on the characteristics of such machines, this paper proposes a multisignal injection method for realizing sensorless control. This method injects multiple highfrequency signals with different frequencies and magnitudes into the machine. Different frequency components in the response current signals are demodulated and then combined together to get the clear primary saliency signal, which is used to identify the rotor position. This new method was validated using a cwSPMSM at low speed. The experimental results proved the effectiveness and accuracy of the new method.Index Terms-Multisignal injection, sensorless control, surfacemounted permanent magnet synchronous machine with concentrated windings (cwSPMSM).