Force-free current sheets are local plasma structures with field-aligned electric currents and approximately uniform plasma pressures. Such structures, widely found throughout the heliosphere, are sites for plasma instabilities and magnetic reconnection, the growth rate of which is controlled by the structure’s current-sheet configuration. Despite the fact that many kinetic equilibrium models have been developed for one-dimensional force-free current sheets, their two-dimensional (2D) counterparts, which have a magnetic field component normal to the current sheets, have not received sufficient attention to date. Here, using particle-in-cell simulations, we search for such 2D force-free current sheets through relaxation from an initial, magnetohydrodynamic equilibrium. Kinetic equilibria are established toward the end of our simulations, thus demonstrating the existence of kinetic force-free current sheets. Although the system currents in the late equilibrium state remain field aligned as in the initial configuration, the velocity distribution functions of both ions and electrons systematically evolve from their initial drifting Maxwellians to their final time-stationary Vlasov state. The existence of 2D force-free current sheets at kinetic equilibrium necessitates future work in discovering additional integrals of motion of the system, constructing the kinetic distribution functions, and eventually investigating their stability properties.