Background
Autism spectrum disorder (ASD) is associated with atypical neural activity in resting-state. Most of the studies have focused on abnormalities in alpha-frequency, as a marker of ASD dysfunctions. However, few have explored alpha synchronization, with a specific interest in resting-state networks: the default mode network (DMN), the sensorimotor network (SMN), and the dorsal attention network (DAN). These functional connectivity analyses provide relevant insight into the neurophysiological correlates of multimodal integration in ASD.
Methods
Using the high temporal resolution of EEG, the present study investigates the functional connectivity in the alpha band within and between the DMN, SMN, and the DAN. We examined eyes-closed EEG alpha lagged phase synchronization, using standardized Low-Resolution Brain Electromagnetic Tomography (sLORETA) in 29 participants with ASD and 38 age,- sex- and IQ-matched typically developing (TD) controls.
Results
We observed reduced functional connectivity in the ASD group relative to TD controls, within and between the DMN, the SMN, and the DAN. We identified three hubs of dysconnectivity in ASD: the posterior cingulate cortex, the precuneus, and the medial frontal gyrus. These three regions also presented decreased current source density in the alpha band.
Conclusion
These results may account for impairments in multimodal - sensory and internal information - integration frequently observed in ASD. Underconnectivity potentially involves difficulties switching between this externally oriented attention and internally oriented thoughts and, more broadly, may impact embodied cognition.