Droughts grow concurrently in space and time; however, their spatiotemporal propagation is still not fully studied. In this study, drought propagation and spatiotemporal characteristics were studied in northern, northeastern, and central Thailand (NNCT). The NNCT is an important agricultural exporter worldwide, and droughts here can lead to considerable pressure on the food supply. This study investigated meteorological drought and soil drought in northern Thailand and identified 70 meteorological drought events and 44 soil drought events over 1948â2014. Severe droughts (droughts with long trivariate return periods) mainly occurred after 1975 and were centered in northern and northeastern Thailand. Meteorological drought and soil drought that occurred during 1979â1980 had the longest trivariate return periods of 157 years and 179 years, respectively. The drought centers were mainly located in the Chao Phraya River basin and the Mun River basin. The mean propagation ratios of all drought parameters (duration, area, severity) were lower than 1, indicating that the underlying surface can serve as a buffer to alleviate water deficits. Most of the probability distribution coefficients and all drought propagation ratios of the three drought parameters were found to change significantly based on a moving-window method, indicating that the drought parameters and propagation from meteorological drought to soil drought were non-stationary. Significant increasing trends were detected in mean values of most drought parameters, ranging from 2.4%/decade to 16.6%/decade. Significant decreasing trends were detected in coefficients of skewness (Cs) of all drought parameters and coefficients of variation (Cv) of most drought parameters, ranging from â3.3 to â12.4%/decade, and from â5.5 to â19.4%/decade, respectively. The propagation ratios of all drought parameters showed significant increasing trends, indicating that the function of the underlying surface as a buffer has become weaker. The drought propagation ratios were found to be positively related to two climate indices, the phase index (PI) and the climate seasonality index (CSI). These findings will help to develop a better understanding and management of water resources in Thailand.