Background. Artificial intelligence (AI) has been widely applied in the diagnosis and therapy of chronic liver disease (CLD), but there is currently little insight into the trials registered on ClinicalTrials.gov. Thus, this cross-sectional study was focused on analyzing the progress in the use of AI in CLD. Methods. Registered trials of AI applied in CLD on ClinicalTrials.gov were searched firstly. All available information was downloaded to Excel (Microsoft Excel, Rong, Rong, China), and duplicates were removed. We extracted the data of the included trials, then analyzed the characteristics of them finally. Results. Up to the 27th of May 2021, 6835 trials were identified following an initial search, and 20 registered trials were included after screening for inclusion and exclusion criteria. Among those trials, hepatocellular carcinoma (HCC, 40.0%) and nonalcoholic fatty liver disease (NAFLD, 20.0%) were the most widely applied CLDs for AI. Trials started in 2013 until 2021, with 17 trials (85%) registered after 2016. There was a large trend in trial enrolment, with 40% of them including samples more than 500. Five trials (25%) have been completed, but only one of these had available results. The most frequent sponsors and collaborators were both hospitals at 55%, followed by universities at 35% and institutes at 11%, respectively. Of the 20 trials included, 35% (7 trials) were interventional trials and 65% (13 trials) were observational trials. Among 7 interventional trials, most trials were for diagnosis purpose (42.86%, 3 trials); 4 trials (57.14%) were randomized; 3 trials (42.86%) applied behavioral intervention, 1 trial (14.29%) was in device intervention, 2 trials (28.57%) were in diagnostic test, and 1 trial intervention was unknown. Among 13 observational trials, 8 (61.54%) were cohort studies; 6 (46.15%) were prospective studies, 4 (30.77%) were retrospective studies, 2 (15.38%) were cross-sectional studies, and 1 (7.69%) did not involve a temporal perspective. Conclusion. The study is the first to focus on AI registration trials in CLD, which will aid relevant scholars in understanding the current state of the subject. This study demonstrates that additional research on AI used in the diagnosis and treatment of CLD is required, and timely publication of accessible results from registered trials is essential.