This study aimed to develop an early prediction model for identifying patients with bloodstream infections. The data resource was taken from 2015 to 2019 at Taichung Veterans General Hospital, and a total of 1647 bloodstream infection episodes and 3552 non-bloodstream infection episodes in the intensive care unit (ICU) were included in the model development and evaluation. During the data analysis, 30 clinical variables were selected, including patients’ basic characteristics, vital signs, laboratory data, and clinical information. Five machine learning algorithms were applied to examine the prediction model performance. The findings indicated that the area under the receiver operating characteristic curve (AUROC) of the prediction performance of the XGBoost model was 0.825 for the validation dataset and 0.821 for the testing dataset. The random forest model also presented higher values for the AUROC on the validation dataset and testing dataset, which were 0.855 and 0.851, respectively. The tree-based ensemble learning model enabled high detection ability for patients with bloodstream infections in the ICU. Additionally, the analysis of importance of features revealed that alkaline phosphatase (ALKP) and the period of the central venous catheter are the most important predictors for bloodstream infections. We further explored the relationship between features and the risk of bloodstream infection by using the Shapley Additive exPlanations (SHAP) visualized method. The results showed that a higher prothrombin time is more prominent in a bloodstream infection. Additionally, the impact of a lower platelet count and albumin was more prominent in a bloodstream infection. Our results provide additional clinical information for cut-off laboratory values to assist clinical decision-making in bloodstream infection diagnostics.
Objective The aim of this study was to develop an artificial intelligence–based model to detect the presence of acute respiratory distress syndrome (ARDS) using clinical data and chest X-ray (CXR) data. Method The transfer learning method was used to train a convolutional neural network (CNN) model with an external image dataset to extract the image features. Then, the last layer of the model was fine-tuned to determine the probability of ARDS. The clinical data were trained using three machine learning algorithms—eXtreme Gradient Boosting (XGB), random forest (RF), and logistic regression (LR)—to estimate the probability of ARDS. Finally, ensemble-weighted methods were proposed that combined the image model and the clinical data model to estimate the probability of ARDS. An analysis of the importance of clinical features was performed to explore the most important features in detecting ARDS. A gradient-weighted class activation mapping (Grad-CAM) model was used to explain what our CNN sees and understands when making a decision. Results The proposed ensemble-weighted methods improved the performances of the ARDS classifiers (XGB + CNN, area under the curve [AUC] = 0.916; RF + CNN, AUC = 0.920; LR + CNN, AUC = 0.920; XGB + RF + LR + CNN, AUC = 0.925). In addition, the ML model using clinical data to present the top 15 important features to identify the risk factors of ARDS. Conclusion This study developed combined machine learning models with clinical data and CXR images to detect ARDS. According to the results of the Shapley Additive exPlanations values and the Grad-CAM techniques, an explicable ARDS diagnosis model is suitable for a real-life scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.