Cells in a developing embryo have no direct way of "measuring" their physical position. Through a variety of processes, however, the expression levels of multiple genes come to be correlated with position, and these expression levels thus form a code for "positional information." We show how to measure this information, in bits, using the gap genes in the Drosophila embryo as an example. Individual genes carry nearly two bits of information, twice as much as would be expected if the expression patterns consisted only of on/off domains separated by sharp boundaries. Taken together, four gap genes carry enough information to define a cell's location with an error bar of ∼ 1% along the anterior/posterior axis of the embryo. This precision is nearly enough for each cell to have a unique identity, which is the maximum information the system can use, and is nearly constant along the length of the embryo. We argue that this constancy is a signature of optimality in the transmission of information from primary morphogen inputs to the output of the gap gene network.gene regulatory networks | embryonic development | optimization B uilding a complex, differentiated body requires that individual cells in the embryo make decisions, and ultimately adopt fates, that are appropriate to their position. There are wildly diverging models for how cells acquire this "positional information" (1), but there is general consensus that they encode positional information in the expression levels of various key genes. A classic example is provided by anterior/posterior patterning in the fruit fly, Drosophila melanogaster, where a small set of gap genes and then a larger set of pair rule and segment polarity genes are involved in the specification of the body plan (2). These genes have expression levels that vary systematically along the body axis, forming a blueprint for the segmented body of the developed larva that we can "read" within hours after the start of development (3).Although there is consensus that particular genes carry positional information, less is known quantitatively about how much information is being represented by the expression levels in individual cells. Do the broad, smooth expression profiles of the gap genes, for example, provide enough information to specify the exact pattern of development, cell by cell, along the anterior/ posterior axis? How much information does the whole embryo use in making this pattern? Answering these questions is important, in part, because we know that crucial molecules involved in the regulation of gene expression are present at low concentrations and even low absolute copy numbers, so that expression is noisy (4-10), and this noise must limit the transmission of information (11)(12)(13)(14). Is it possible, as suggested theoretically (15)(16)(17)(18), that the information transmitted through these regulatory networks is close to the physical limits set by the irreducible randomness of counting individual molecular events? To answer this and other questions, we need to measure position...