Background and aims Soil evolution in mountain areas is strongly influenced by vegetation and terrain topography. In managed forests, however, relationships of the soil to the environment are modified or masked by human intervention. The objective of our study was to uncover the mutual effects of topographic and forest stand factors on the evolution and variability of soils in natural mountain spruce forests. Methods Ordination analyses were applied to extensive data on soil morphology, terrain topography and forest stand structure including its disturbance history, collected at three sites in the Carpathians with natural Norway spruce [Picea abies (L.) Karsten] mountain forests, each with areas≥40 ha. Results Slope characteristics were the most important factors explaining the main gradients in the soil data. Soil cover and organic horizons were also highly correlated with the forest stand structure and historical disturbances. Moreover, at one site that had experienced a historical stand-replacing disturbance, the more disturbed plots showed a higher incorporation of organic matter and less pronounced eluviation in the upper mineral soil compared to less disturbed areas. Conclusions Our results suggest that the long-term shift in pedogenic conditions following a high-severity disturbance may enable the rejuvenation of podzolized soils.