“…Definition 2.1. ( [16]) We say that a sequence \bfs = \{ s i \} \ell i=0 belongs to the \alpha - regular class \scrH k,\alpha - reg \kappa ,\ell , if \bfs \in \scrH k \kappa ,\ell and all polynomials of the first kind P nj associated with the sequence \bfs satisfy the following condition: P nj (\alpha ) \not = 0 for all n j \in \scrN (\bfs ).…”
Section: Preliminariesmentioning
confidence: 99%
“…As was shown in [16,Lemma 5.4], the Stieltjes polynomials are solutions of the following system, and S - fraction (2.25) is also associated with the following system of difference equations:…”
Section: Stieltjes Polynomialsmentioning
confidence: 99%
“…Indefinite moment problems in the classes \bfN \kappa were studied in [3,20]. Indefinite moment problems in the classes \bfN + \kappa and \bfN k \kappa were studied in [20,21] and [5,6,7,8,9,14,16], respectively.…”
Section: Introductionmentioning
confidence: 99%
“…In this paper, we study the \alpha - regular indefinite moment problem in the generalized Stieltjes class and its connection with the Darboux transformation. It is based on the results of [15,16]. New formulas for the Stieltjes polynomials are found in the Section 3, and then we obtain a description of a solution of the \alpha - regular indefinite moment problem MP k \kappa (s, \ell ).…”
A sequence of the real numbers s = \{ s i \} \ell i=0 is associated with the some indefinite Stieltjes moment problem and generalized Jacobi matrices. The relation between the \alpha - regular indefinite Stieltjes moment problem and shifted Darboux transformation of the generalized Jacobi matrix is studied. The new formulas for the Stieltjes polynomials with the shift are found and one are used to obtain the description of the solutions of the \alpha - regular indefinite Stieltjes moment problem. Послiдовнiсть дiйсних чисел s = \{ s i \} \ell i=0 пов'язана з деякою задачею про невизначений момент Стiлтьєса та узагальненими матрицями Якобi. Дослiджено зв'язок мiж \alpha - регулярною проблемою невизначеного моменту Стiлтьєса та змiщеним перетворенням Дарбу узагальненої матрицi Якобi. Знайдено новi формули для полiномiв Стiлтьєса зi зсувом та використано для отримання опису розв'язкiв \alpha - регулярної невизначеної проблеми моменту Стiлтьєса.
“…Definition 2.1. ( [16]) We say that a sequence \bfs = \{ s i \} \ell i=0 belongs to the \alpha - regular class \scrH k,\alpha - reg \kappa ,\ell , if \bfs \in \scrH k \kappa ,\ell and all polynomials of the first kind P nj associated with the sequence \bfs satisfy the following condition: P nj (\alpha ) \not = 0 for all n j \in \scrN (\bfs ).…”
Section: Preliminariesmentioning
confidence: 99%
“…As was shown in [16,Lemma 5.4], the Stieltjes polynomials are solutions of the following system, and S - fraction (2.25) is also associated with the following system of difference equations:…”
Section: Stieltjes Polynomialsmentioning
confidence: 99%
“…Indefinite moment problems in the classes \bfN \kappa were studied in [3,20]. Indefinite moment problems in the classes \bfN + \kappa and \bfN k \kappa were studied in [20,21] and [5,6,7,8,9,14,16], respectively.…”
Section: Introductionmentioning
confidence: 99%
“…In this paper, we study the \alpha - regular indefinite moment problem in the generalized Stieltjes class and its connection with the Darboux transformation. It is based on the results of [15,16]. New formulas for the Stieltjes polynomials are found in the Section 3, and then we obtain a description of a solution of the \alpha - regular indefinite moment problem MP k \kappa (s, \ell ).…”
A sequence of the real numbers s = \{ s i \} \ell i=0 is associated with the some indefinite Stieltjes moment problem and generalized Jacobi matrices. The relation between the \alpha - regular indefinite Stieltjes moment problem and shifted Darboux transformation of the generalized Jacobi matrix is studied. The new formulas for the Stieltjes polynomials with the shift are found and one are used to obtain the description of the solutions of the \alpha - regular indefinite Stieltjes moment problem. Послiдовнiсть дiйсних чисел s = \{ s i \} \ell i=0 пов'язана з деякою задачею про невизначений момент Стiлтьєса та узагальненими матрицями Якобi. Дослiджено зв'язок мiж \alpha - регулярною проблемою невизначеного моменту Стiлтьєса та змiщеним перетворенням Дарбу узагальненої матрицi Якобi. Знайдено новi формули для полiномiв Стiлтьєса зi зсувом та використано для отримання опису розв'язкiв \alpha - регулярної невизначеної проблеми моменту Стiлтьєса.
“…The indefinite Hamburger moment in the generalized Nevanlinna class N κ was studied in [10]. The indefinite Stieltjes moment problem in the generalized Stieltjes class N k κ was studied in [11], [1], [2], [6] and [7]. One is based on the Schur algorithm, i.e.…”
The rational meromorphic functions on $\mathbb{C}\backslash\mathbb{R}$ are studied. We consider the some classes of one, as the generalized Nevanlinna $\mathbf{N}_{\kappa}$ and generalized Stieltjes $\mathbf{N}_{\kappa}^{k}$ classes. By Euclidean algorithm, we can find indices $\kappa$ and $k$, i.e. determine which class the function belongs to $\mathbf{N}_{\kappa}^{k}$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.