The nondegenerate truncated indefinite Stieltjes moment problem in the class Nκk of generalized Stieltjes functions is considered. To describe the set of solutions of this problem we apply the Schur step‐by‐step algorithm, which leads to the expansion of these solutions in generalized Stieltjes continuous fractions studied recently in [11]. Explicit formula for the resolvent matrix in terms of generalized Stieltjes polynomials is found.
Full indefinite Stieltjes moment problem is studied via the step-by-step Schur algorithm. Naturally associated with indefinite Stieltjes moment problem are generalized Stieltjes continued fraction and a system of difference equations, which, in turn, lead to factorization of resolvent matrices of indefinite Stieltjes moment problem. A criterion for such a problem to be indeterminate in terms of continued fraction is found and a complete description of its solutions is given in the indeterminate case. Explicit formulas for diagonal and sub-diagonal Padé approximants for formal power series corresponding to indefinite Stieltjes moment problem and convergence results for Padé approximants are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.