There is an increasing recognition that nanomaterials pose a risk to human health, and that the novel engineered nanomaterials (ENMs) in the nanotechnology industry and their increasing industrial usage poses the most immediate problem for hazard assessment, as many of them remain untested. The large number of materials and their variants (different sizes and coatings for instance) that require testing and ethical pressure towards non-animal testing means that expensive animal bioassay is precluded, and the use of (quantitative) structure activity relationships ((Q)SAR) models as an alternative source of hazard information should be explored.(Q)SAR modelling can be applied to fill the critical knowledge gaps by making the best use of existing data, prioritize physicochemical parameters driving toxicity, and provide practical solutions to the risk assessment problems caused by the diversity of ENMs. This paper covers the core components required for successful application of (Q)SAR technologies to ENMs toxicity prediction, and summarizes the published nano-(Q)SAR studies and outlines the challenges ahead for nano-(Q)SAR modelling. It provides a critical review of (1) the present status of the availability of ENMs characterization/toxicity data, (2) the characterization of nanostructures that meets the need of (Q)SAR analysis, (3) the summary of published nano-(Q)SAR studies and their limitations, (4) the in silico tools for (Q)SAR screening of nanotoxicity and (5) the prospective directions for the development of nano-(Q)SAR models.