Zn metal as one of promising anode materials for aqueous batteries but suffers from disreputable dendrite growth, grievous hydrogen evolution and corrosion. Here, a polycation additive, polydiallyl dimethylammonium chloride (PDD), is introduced to achieve long-term and highly reversible Zn plating/ stripping. Specifically, the PDD can simultaneously regulate the electric fields of electrolyte and Zn/electrolyte interface to improve Zn 2 + migration behaviors and guide dominant Zn (002) deposition, which is veritably detected by Zeta potential, Kelvin probe force microscopy and scanning electrochemical microscopy. Moreover, PDD also creates a positive charge-rich protective outer layer and a N-rich hybrid inner layer, which accelerates the Zn 2 + desolvation during plating process and blocks the direct contact between water molecules and Zn anode. Thereby, the reversibility and long-term stability of Zn anodes are substantially improved, as certified by a higher average coulombic efficiency of 99.7 % for Zn j j Cu cells and 22 times longer life for Zn j j Zn cells compared with that of PDD-free electrolyte.