The parasitic wasp, Cotesia congregata, suppresses feeding in its host Manduca sexta. Feeding suppression in the host coincides with the emergence of the wasps through the host's cuticle. During wasp emergence, host hemocyte number declined, suggesting that the host mounts a wound/immune response against the exiting parasitoids and/or resulting tissue damage. Eliciting a different type of immune response by injecting heat-killed Serratia marcescens also resulted in a decline in feeding and a reduction in hemocyte number. Both the emerging wasps and the bacteria induced an increase in hemolymph octopamine concentration and a decrease in foregut peristalsis in M. sexta. The emerging parasitoids produced the largest changes. The source of the additional octopamine appeared to be the host in both cases. S. marcescens was found to contain no detectable amounts of octopamine. The parasitoids had insufficient octopamine to account for the amount found in host hemolymph and they did not secrete octopamine in vitro. One cause for the high concentration of octopamine in parasitized M. sexta was that octopamine was removed from the hemolymph approximately 23 times more slowly after the wasps emerged than prior to wasp emergence. The striking similarity between the effects of parasitoids and bacteria on M. sexta feeding, hemocyte number, hemolymph octopamine concentration, and foregut peristalsis supports the possibility that the immune/wound reaction induced by the emerging wasps could play a role in the suppression of host feeding. These results also support the hypothesis that M. sexta exhibit an immune-activated anorexia.