Camellia vietnamensis Huang is an important and famous woody oil crop with high economic value in China because of its high-quality, edible, and medicinal oil. As one of its major active components, tea saponin (triterpenoid saponin) has shown anticancer, antioxidant, bacteriostatic, and other pharmacological activities. In this study, C. vietnamensis was used as an experimental material to determine the tea saponin content and physiological activity indicators after salicylic acid (SA) treatment and to analyze the differential expression genes of key metabolic pathways in response to SA by combining transcriptome data. The results showed that SA treatment increased the content of tea saponin and total phenols in leaves; effectively promoted the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX); and decreased the content of malondialdehyde (MDA). A total of 60,038 genes, including 5871 new genes, were obtained by the RNA-seq. There were 6609 significantly differential expression genes mainly enriched in pathways such as sesquiterpenoid and triterpenoid biosynthesis, terpenoid backbone biosynthesis, diterpenoid biosynthesis, and flavonoid biosynthesis. The SA-induced key structural genes (SQS, SQE, bAS, CYP450, and UGT) and transcription factors related to the tea saponin biosynthetic pathway were screened by weighted gene co-expression network analysis (WGCNA). The results of this study could provide a theoretical basis and a new technical method to improve the content of tea saponin, with its excellent anticancer activity, in C. vietnamensis.