SummaryThe profile of secondary metabolites in plants reflects the balance of biosynthesis, degradation and storage, including the availability of precursors and products that affect the metabolic equilibrium. We investigated the impact of the precursor-product balance on the carotenoid pathway in the endosperm of intact rice plants because this tissue does not normally accumulate carotenoids, allowing us to control each component of the pathway. We generated transgenic plants expressing the maize phytoene synthase gene (ZmPSY1) and the bacterial phytoene desaturase gene (PaCRTI), which are sufficient to produce b-carotene in the presence of endogenous lycopene b-cyclase. We combined this mini-pathway with the Arabidopsis thaliana genes AtDXS (encoding 1-deoxy-D-xylulose 5-phosphate synthase, which supplies metabolic precursors) or AtOR (the ORANGE gene, which promotes the formation of a metabolic sink). Analysis of the resulting transgenic plants suggested that the supply of isoprenoid precursors from the MEP pathway is one of the key factors limiting carotenoid accumulation in the endosperm and that the overexpression of AtOR increased the accumulation of carotenoids in part by up-regulating a series of endogenous carotenogenic genes. The identification of metabolic bottlenecks in the pathway will help to refine strategies for the creation of engineered plants with specific carotenoid profiles.
SUMMARYWe have developed an assay based on rice embryogenic callus for rapid functional characterization of metabolic genes. We validated the assay using a selection of well-characterized genes with known functions in the carotenoid biosynthesis pathway, allowing rapid visual screening of callus phenotypes based on tissue color. We then used the system to identify the functions of two uncharacterized genes: a chemically synthesized b-carotene ketolase gene optimized for maize codon usage, and a wild-type Arabidopsis thaliana ortholog of the cauliflower , we found that the wild-type Orange allele was sufficient to induce chromoplast differentiation. We also found that chromoplast differentiation was induced by increasing the availability of precursors and thus driving flux through the pathway, even in the absence of Orange. Remarkably, we found that diverse endosperm-specific promoters were highly active in rice callus despite their restricted activity in mature plants. Our callus system provides a unique opportunity to predict the effect of metabolic engineering in complex pathways, and provides a starting point for quantitative modeling and the rational design of engineering strategies using synthetic biology. We discuss the impact of our data on analysis and engineering of the carotenoid biosynthesis pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.