SummaryBacillus thuringiensis (Bt) is a soil bacterium that forms spores during the stationary phase of its growth cycle. The spores contain crystals, predominantly comprising one or more Cry and ⁄ or Cyt proteins (also known as d-endotoxins) that have potent and specific insecticidal activity. Different strains of Bt produce different types of toxin, each of which affects a narrow taxonomic group of insects. Therefore, Bt toxins have been used as topical pesticides to protect crops, and more recently the proteins have been expressed in transgenic plants to confer inherent pest resistance. Bt transgenic crops have been overwhelmingly successful and beneficial, leading to higher yields and reducing the use of chemical pesticides and fossil fuels. However, their deployment has attracted some criticism particularly with regard to the potential evolution of pest-resistant insect strains. Here, we review recent progress in the development of Bt technology and the countermeasures that have been introduced to prevent the evolution of resistant insect populations.
We have generated transgenic rice plants expressing the Datura stramonium adc gene and investigated their response to drought stress. We monitored the steady-state mRNA levels of genes involved in polyamine biosynthesis (Datura adc, rice adc, and rice samdc) and polyamine levels. Wild-type plants responded to the onset of drought stress by increasing endogenous putrescine levels, but this was insufficient to trigger the conversion of putrescine into spermidine and spermine (the agents that are believed to protect plants under stress). In contrast, transgenic plants expressing Datura adc produced much higher levels of putrescine under stress, promoting spermidine and spermine synthesis and ultimately protecting the plants from drought. We demonstrate clearly that the manipulation of polyamine biosynthesis in plants can produce drought-tolerant germplasm, and we propose a model consistent with the role of polyamines in the protection of plants against abiotic stress.A biotic stresses such as drought represent some of the most significant constraints to agricultural productivity. Transgenic approaches can be used in combination with conventional breeding strategies to create crops with enhanced drought tolerance, and one way in which this can be achieved is through the manipulation of polyamine metabolism. Polyamines are small, ubiquitous, nitrogenous compounds that have been implicated in a variety of stress responses in plants (1). The link between polyamines and abiotic stress was first documented through putrescine accumulation in response to suboptimal potassium levels in barley (2). Since then, a connection has been suggested between increased putrescine levels and abiotic stress (3). Similar phenomena have been described in animals, e.g., during ischemic and postischemic responses in neurons (4). The physiological role of putrescine in abiotic stress responses is a matter of controversy. It has been very difficult to establish a direct cause-and-effect relationship between increased putrescine levels in plants and abiotic stress. Elevated putrescine might be the cause of stress-induced injury or, alternatively, a protective response resulting from stress (5).The genetic manipulation of polyamine metabolism has become a valuable tool for studying their physiological roles in plants (6). Plant polyamine content has been modulated by the overexpression͞down-regulation of arginine decarboxylase (adc), ornithine decarboxylase (odc), and S-adenosylmethionine decarboxylase (samdc) (6-10). Overexpression of heterologous adc or odc cDNAs in plants generally results in the production of high levels of putrescine (11-13). In most cases, this is accompanied by a relatively small increase in spermidine and spermine concentrations (7,14). Such findings suggest that the levels of spermidine and spermine are under strict homeostatic regulation (15). Therefore, the study of plants transformed with genes involved in polyamine biosynthesis may shed light on the importance of polyamines, their role in the acquisition of stress ...
Vitamin deficiency affects up to 50% of the world's population, disproportionately impacting on developing countries where populations endure monotonous, cereal-rich diets. Transgenic plants offer an effective way to increase the vitamin content of staple crops, but thus far it has only been possible to enhance individual vitamins. We created elite inbred South African transgenic corn plants in which the levels of 3 vitamins were increased specifically in the endosperm through the simultaneous modification of 3 separate metabolic pathways. The transgenic kernels contained 169-fold the normal amount of -carotene, 6-fold the normal amount of ascorbate, and double the normal amount of folate. Levels of engineered vitamins remained stable at least through to the T3 homozygous generation. This achievement, which vastly exceeds any realized thus far by conventional breeding alone, opens the way for the development of nutritionally complete cereals to benefit the world's poorest people.folic acid ͉ metabolic engineering ͉ transgenic maize ͉ vitamin A fortification ͉ vitamin C
Combinatorial nuclear transformation is a novel method for the rapid production of multiplex-transgenic plants, which we have used to dissect and modify a complex metabolic pathway. To demonstrate the principle, we transferred 5 carotenogenic genes controlled by different endosperm-specific promoters into a white maize variety deficient for endosperm carotenoid synthesis. We recovered a diverse population of transgenic plants expressing different enzyme combinations and showing distinct metabolic phenotypes that allowed us to identify and complement rate-limiting steps in the pathway and to demonstrate competition between -carotene hydroxylase and bacterial -carotene ketolase for substrates in 4 sequential steps of the extended pathway. Importantly, this process allowed us to generate plants with extraordinary levels of -carotene and other carotenoids, including complex mixtures of hydroxycarotenoids and ketocarotenoids. Combinatorial transformation is a versatile approach that could be used to modify any metabolic pathway and pathways controlling other biochemical, physiological, or developmental processes.induced mutation ͉ metabolic engineering ͉ transgenic plant ͉ provitamin A
DNA transfer by particle bombardment makes use of physical processes to achieve the transformation of crop plants. There is no dependence on bacteria, so the limitations inherent in organisms such as Agrobacterium tumefaciens do not apply. The absence of biological constraints, at least until DNA has entered the plant cell, means that particle bombardment is a versatile and effective transformation method, not limited by cell type, species or genotype. There are no intrinsic vector requirements so transgenes of any size and arrangement can be introduced, and multiple gene cotransformation is straightforward. The perceived disadvantages of particle bombardment compared to Agrobacterium-mediated transformation, i.e. the tendency to generate large transgene arrays containing rearranged and broken transgene copies, are not borne out by the recent detailed structural analysis of transgene loci produced by each of the methods. There is also little evidence for major differences in the levels of transgene instability and silencing when these transformation methods are compared in agriculturally important cereals and legumes, and other non-model systems. Indeed, a major advantage of particle bombardment is that the delivered DNA can be manipulated to influence the quality and structure of the resultant transgene loci. This has been demonstrated in recently reported strategies that favor the recovery of transgenic plants containing intact, singlecopy integration events, and demonstrating high-level transgene expression. At the current time, particle bombardment is the most efficient way to achieve plastid transformation in plants and is the only method so far used to achieve mitochondrial transformation. In this review, we discuss recent data highlighting the positive impact of particle bombardment on the genetic transformation of plants, focusing on the fate of exogenous DNA, its organization and its expression in the plant cell. We also discuss some of the most important applications of this technology including the deployment of transgenic plants under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.